Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Новосибирский государственный технический университет» Факультет Автоматики и Вычислительной Техники Кафедра Автоматизированных Систем Управления

РАСЧЕТНО-ГРАФИЧЕСКАЯ РАБОТА

по дисциплине «Методы анализа данных»

на тему «Классификация с помощью нейронной сети в пакетах STATISTICA и Deductor»

Выполнил студент группы АВТ-412: Лазаревич М.М.

Проверил доцент кафедры АСУ: Ганелина Н.Д.

1 Цель работы

Для выбранного массива данных решить задачу классификации при использовании нейронной сети в пакетах *STATISTICA* и *Deductor*. Исследовать влияние параметров сети на качество решения в каждом из пакетов. Сравнить полученные результаты.

2 Постановка задачи

Необходимо построить нейронную сеть для классификации машин по значениям, основанным на множестве снимков моделей с разных ракурсов.

3 Исходные данные

Используемый массив содержит данные о силуэтах четырёх моделей машин. Данные основаны на снимках автомобилей с различных ракурсов. Все изображения были сняты с разрешением 128х128 пикселей в монохромном режиме в 6-х битном представлении. Изображения были использованы для получения бинарных силуэтов машин и отфильтрованы для удаления шума. Для каждой машины, за исключением машин класса "van" было сделано четрые набора по 60 изображений, покрывающих полный поворот вокруг оси.

```
Классы: opel, saab, bus, van
Количество экземпляров: 946
Количество пропущенных значений: 0
Количество экземпляров каждого класса:
opel 240
saab 240
bus 240
van 226
Количество атрибутов: 19
Атрибуты:
Compactness – Компактность – \frac{\left| \textit{средний периметр} \right|^2}{\textit{площадь}} Circularity - Округлость – \frac{\left| \textit{средний радиус} \right|^2}{\textit{площадь}}
                                                           \frac{nлощадь \left( среднее расстояние до границы\right)^2
Distance circularity – Расстояние округлости –
Radius ratio — Соотношение радиусов — \frac{\textit{макс. paduyc} - \textit{мин. paduyc}}{}
                                                           средний радиус
Pr.axis aspect ratio — Соотношение сторон по главной оси — \frac{\text{минорная ось}}{\text{--}}
                                                                             главная ось
Max.length aspect ratio – Соотношение максимальных длин –
длина перпендикулярная максимальной длине
               максимальная длина
Scatter ratio – Коэффициент рассеяния – 

инерция вокруг минорной оси
Elongatedness – Вытянутость – \frac{nлощадь}{uupuнa сжатия^2}
```

Scaled radius of gyration – Масштабированный радиус вращения

Skewness about major axis – Асимметрия вдоль главной оси

Skewness about minor axis – Асимметрия вдоль минорной оси

Kurtosis about major axis – Эксцесс вдоль главной оси

Kurtosis about minor axis – Эксцесс вдоль главной оси

Hollows ratio – Коэффициент пустот – $\frac{nлощадь nустот}{nлощадь onисанного многоугольника}$

Class – Класс

Все значения неклассовых атрибутов являются целыми числами.

Описательные статистики представлены на рисунке 1. По ним видно, что ни один параметр выборки не близок к нормальному.

Описательные статистики

	N	Минимум	Максимум	Среднее	Среднекв. отклонение
COMPACTNESS	846	73	119	93.68	8.234
CIRCULARITY	846	33	59	44.86	6.170
DISTANCECIRCULARITY	846	40	112	82.09	15.772
RADIUSRATIO	846	104	333	168.94	33.472
PR.AXISASPECTRATIO	846	47	138	61.69	7.888
MAX. LENGTHASPECTRATIO	846	2	55	8.57	4.601
SCATTERRATIO	846	112	265	168.84	33.245
ELONGATEDNESS	846	26	61	40.93	7.812
PR. AXISRECTANGULARITY	846	17	29	20.58	2.592
MAX. LENGTHRECTANGULAR ITY	846	118	188	148.00	14.516
SCALEDVARIANCEALON GMAJORAXIS	846	130	320	188.63	31.395
SCALEDVARIANCEALON GMINORAXIS	846	184	1018	439.91	176.693
SCALEDRADIUSOFGYRA TION	846	109	268	174.70	32.546
SKEWNESSABOUTMAJO RAXIS	846	59	135	72.46	7.487
SKEWNESSABOUTMINO RAXIS	846	0	22	6.38	4.918
KURTOSISABOUTMINOR AXIS	846	0	41	12.60	8.931
KURTOSISABOUTMAJOR AXIS	846	176	206	188.93	6.164
HOLLOWSRATIO	846	181	211	195.63	7.439
N валидных (по списку)	846				

Рис 1. Описательные статистики значений атрибутов исследуемого массива данных На рисунке 2 представлено распределение наблюдений по классам, оно примерно равномерное.

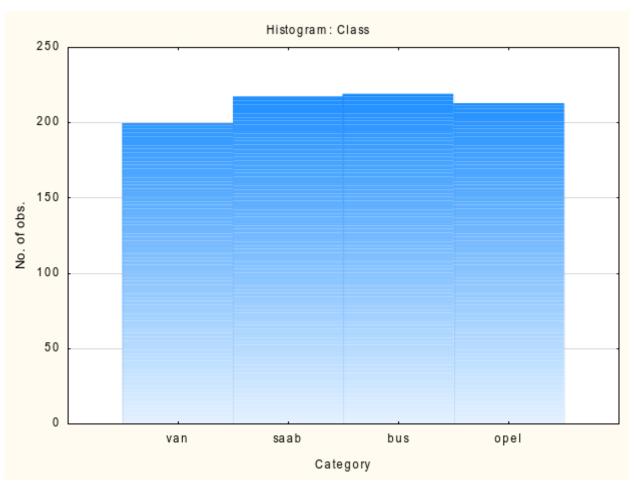


Рис 2. Распределение наблюдений по классам

На рисунке 3 представлена корреляционная матрица. Как видно по матрице, в ней довольно много пар с коэффициентом корреляции больше 0.7 по абсолютному значению, на основе этого принято решение о проведении факторного анализа.

	Correlations (dataset 54 vehicle - копия.sta)																
	Marked correlations are significant at p < ,7000																
	N=846 (C	I=846 (Casewise deletion of missing data)															
	Compact	Circularit	Distanc	Radius	Pr.axis	Max	Scatter	Elongated	Pr.axis	Max	Scaled	Scaled	Scaled	Skewnes	Skewness	Kurtosis	Kurtosis
	ness	У	е	ratio	aspect	length	ratio	bess	rectangul	length	variance	variance	radius of	s about	about	about	about
			circulari		ratio	aspect			arity	rectangula		along minor	gyration	major	minor axis	minor axis	major axis
			ty			ratio				rity	major axis	axis		axis			
Variable																	
Compactness							0,813003			0,676143	0,764415	0,818632	0,585347	-0,252984	0,233693	0,156779	
Circularity							0,860367	-0,828755		0,965776			0,936080	0,058669		-0,015482	
Distance circularity								-0,912307		0,774524				-0,231660		0,264522	
Radius ratio							0,738460	-0,792557		0,570154		0,725781	0,539069	-0,182412		0,174299	0,380757
Pr.axis aspect ratio							0,106064	-0,185086	-,	0,129168	0,274705	0,092182	0,124408	0,152304	-0,056807	-0,034180	
Max length aspect rat	0,148249	0,247467	0,264309	0,448048	0,648096	1,000000	0,166769	-0,180044	0,161861	0,305943	0,319430	0,144606	0,189791	0,294548	0,015218	0,043379	-0,027317
							1,000000		-,	0,810648	-,			-0,028618		0,210706	0,004053
Elongatedbess	0,788647	0,828755	0,912307	-0,792557	0,185086	0,180044	-0,973385	1,000000	-0,950512	-0,775531	-0,938392	-0,956522	-0,766146	0,104875	-0,053346	-0,185189	-0,112046
Pr.axis rectangularity	0,813437	0,857925	0,895326	0,711497	0,079982	0,161861	0,992088	-0,950512	1,000000	0,813305	0,938266	0,992346	0,798282	-0,016333	0,082346	0,213088	-0,022056
Max length rectangula										1,000000			0,866479	0,040339		0,001183	
Scaled variance along	0,764415	0,808496	0,864432	0,797588	0,274705	0,319430	0,951862	-0,938392	0,938266	0,747152	1,000000	0,949888	0,780962	0,111296	0,039137	0,191948	0,011189
Scaled variance along	0,818632	0,852679	0,889661	0,725781	0,092182	0,144606	0,996318	-0,956522	0,992346	0,798071	0,949888	1,000000	0,797540	-0,019872	0,076435	0,202894	0,005380
Scaled radius of gyrat	0,585347	0,936080	0,705818	0,539069	0,124408	0,189791	0,800932	-0,766146	0,798282	0,866479	0,780962	0,797540	1,000000	0,191209	0,168003	-0,056218	-0,227366
Skewness about majo	0,252984	0,058669	0,231660	-0,182412	0,152304	0,294548	-0,028618	0,104875	-0,016333	0,040339	0,111296	-0,019872	0,191209	1,000000	-0,092539	-0,126157	-0,754142
Skewness about mind	0,233693	0,148433	0,116478	0,050534	0,056807	0,015218	0,074347	-0,053346	0,082346	0,137473	0,039137	0,076435	0,168003	-0,092539	1,000000	-0,039365	0,116932
Kurtosis about minor a	0,156779	0,015482	0,264522	0,174299	0,034180	0,043379	0,210706	-0,185189	0,213088	0,001183	0,191948	0,202894	-0,056218	-0,126157	-0,039365	1,000000	0,079090
Kurtosis about major :	0,297780	0,113047	0,147980	0,380757	0,238195	-0,027317	0,004053	-0,112046	-0,022056	-0,107718	0,011189	0,005380	-0,227366	-0,754142	0,116932	0,079090	1,000000
Hollows ratio	0.365552	0.038677	0.335453	0.469278	0.267381	0.143919	0.119950	-0.216725	0.098519	0.076770	0.085540	0.105432	-0.117808	-0.805399	0.099149	0.204924	0.894098

Рис 3. Корреляционная матрица

В результате проведения факторного анализа было выделено 4 фактора, факторные нагрузки для которых представлены на рисунке 4. Интерпретация выделенных факторов оказалась довольна затруднительна. Попытки использовать выделенные факторы в решении задачи классификации не привели к хорошему результату, об этом будет указано ниже при анализе результатов решения задачи классификации в STATISTICA.

	Factor Loadings (Varimax normalized) (dataset_54_vel Extraction: Principal components											
	(Marked loadii	(Marked loadings are >,700000)										
	Factor	Factor	Factor	Factor								
Variable	1	2	3	4								
Compactness	0,823876	0,335723	0,019755	-0,058614								
Circularity	0,920411	-0,103650	0,108303	-0,210405								
Distance circularity	0,909986	0,231751	0,105671	0,095174								
Radius ratio	0,698477	0,356569	0,551893	0,096674								
Pr.axis aspect ratio	0,066898	0,120977	0,934032	0,011250								
Max length aspect ratio	0,156140	-0,090437	0,850105	-0,005924								
Scatter ratio	0,984729	0,031266	0,033604	0,102389								
Elongatedbess	-0,951933	-0,127448	-0,096842	-0,100491								
Pr.axis rectangularity	0,981329	0,010874	0,012500	0,096970								
Max length rectangularity	0,876084	-0,085838	0,121133	-0,209199								
Scaled variance along major axis	0,929991	-0,025581	0,231800	0,130247								
Scaled variance along minor axis	0,980502	0,025005	0,016121	0,097857								
Scaled radius of gyration	0,868094	-0,243819	0,079828	-0,238973								
Skewness about major axis	-0,020886	-0,899169	0,278970	0,008661								
Skewness about minor axis	0,135663	0,185609	-0,093249	-0,653723								
Kurtosis about minor axis	0,166403	0,184397	-0,076314	0,738244								
Kurtosis about major axis	-0,034758	0,941042	0,132541	-0,029117								
Hollows ratio	0,092105	0,942386	0,196459	0,035121								
Expl.Var	9,113201	3,063161	2,157172	1,198183								
Prp.Totl	0,506289	0,170176	0,119843	0,066566								

Рис 4. Факторные нагрузки

2 Описание метода

Задача классификации заключается в отнесении наблюдения с некоторым набором атрибутов к одному из нескольких заранее определённых классов. Классы определяются по множеству наблюдений, принадлежность к классам, для которых задана.

Нейронная сеть – набор взаимосвязанных элементов, так называемых нейронов. Каждый нейрон обладает входными синапсами и выходом – аксоном. Значения на синапсах умножаются на соответствующий весовой коэффициент и складываются, полученная сумма трансформируется специальной активационной функцией, которая обычно осуществляет отображения из интервала (-∞,+∞) в ограниченный интервал, обычно [0,1] или [-1,1]. Нейронная сеть позволяет осуществлять аппроксимацию различных многомерных функций. В задаче классификации в качестве выхода может служить как один нейрон с дифференциацией по значения, так и множество нейронов, значение на которых определяет степень принадлежности к классу, хотя возможны и другие варианты. По структуре нейронные сети делятся на сети различных типов, в данной работе используется тип многослойного перцептрона. Применение нейронных сетей для классификации происходит следующим образом. В начале сеть обучается на некоем известном множестве входов и выходов. Обучение заключается в настройке весов таким образом, чтобы уменьшить ошибку на обучающем множестве. После обучения, на вход сети подаётся наблюдение для классификации, по выходному значению определяется класс, к которому принадлежит наблюдений.

3 Решение задачи в STATISTICA

Используем автоматизированные нейронные сети для решения поставленной задачи классификации в пакете STATISTICA. Выходной является переменная "Класс", все остальные переменные используются как входные.

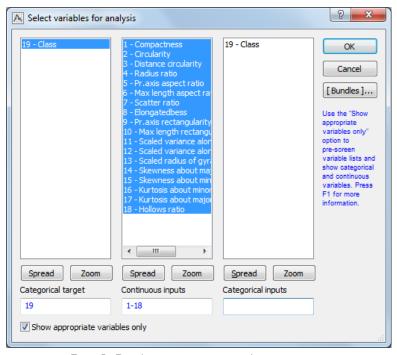


Рис 5. Выбор переменных для анализа

Настроим разделение данных на 3 части случайным образом для обучения, тестирования и валидации полученных нейронных сетей. Соотношения размеров разделений представлены на рисунке 6.

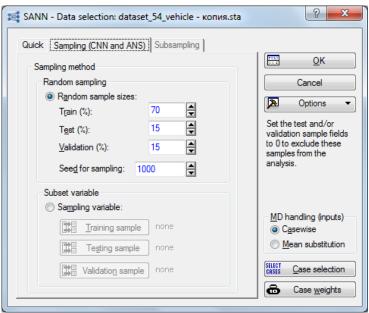


Рис 6. Разделение данных

Укажем тип исследуемых сетей: MLP – многослойный перцептрон, количество нейронов в скрытых уровнях (от 5 до 17), количество проверяемых и отбираемых сетей (20 и 5), тип функций ошибок, используемых для обучения (сумма квадратов и перекрёстная энтропия).

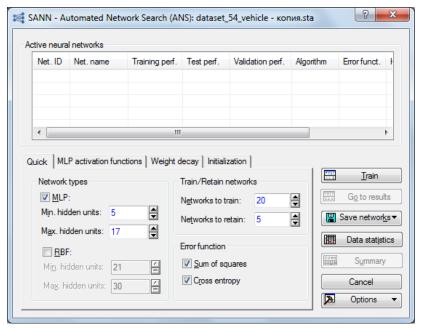


Рис 7. Настройка параметров сети

Зададим типы активационных функций для скрытых слоёв нейронов и выходного слоя отдельно.

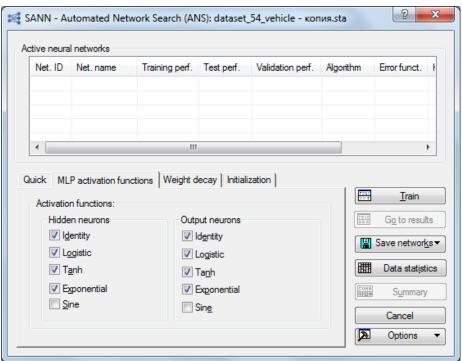


Рис 8. Выбор активационных функций

Запустим процесс обучения и выборки нейронных сетей. Две наилучшие сети представлены на рисунке 9.

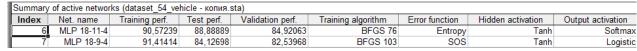


Рис 9. Отобранные сети

Наилучший результат при валидации и тестировании получен нейросетью MLP 18-11-4. Наилучший результат при обучении получен нейросетью MLP 18-9-4. Обе сети используют гиперболический тангенс в качестве активационной функции для нейронов в скрытых слоях,

различие заключается в количестве нейронов в скрытых слоях, алгоритме обучения, функции ошибки и функции активации нейронов выходного слоя.

Анализ чувствительности изображён на рисунке 10. По нему видно, что выбранные сети довольно сильно отличаются, во второй сети более равномерное распределение чувствительности, в то время как в первой наибольшее значение превосходит наименьшее где-то в 18 раз.

	Sensitivity analysis (dataset _54_vehicle - копия.sta) Samples: Train, Test, Validation																	
	Radius ratio	Hollows ratio	Scatter ratio	Kurtosis about major axis	dbess	Max length rectangul arity	Pr.axis aspect ratio	Compact ness	Scaled variance along minor axis	variance	Skewness about major axis	Distance circularity		Circularity	Pr.axis rectangul arity	Max length aspect ratio	Kurtosis about minor axis	Skewnes s about minor axis
Networks										axis								
6.MLP 18-11-4	23,12708	23,38855	19,97726	11,48287	11,09824	10,52372	8,103893	8,451649	4,595129	5,182090	5,455752	4,736822	4,901071	4,537047	3,563594	2,263809	1,335170	1,314833
7.MLP 18-9-4	4,94618	4,08855	4,45253	3,68539	2,43412	2,41040	2,748368	2,001339	4,202132	3,177263	2,664224	2,791925	2,069293	2,394341	2,660168	1,163753	1,297510	1,228841

Рис 10. Анализ чувствительности

На рисунке 11 изображены результаты классификации в сумме по обучению, тестированию и валидации. Видно, что наибольшее количество некорректно определённых классов относится к классам "opel" и "saab". При этом обе сети имеют примерно одинаковые показатели, несмотря на ранее рассмотренное различие в чувствительности к разным атрибутам.

1			1	1 2								
	Class (Classification summary) (dataset_54_vehicle - копия.sta) Samples: Train, Test, Validation											
		Class-bus	Class-opel	Class-saab	Class-van	Class-All						
6.MLP 18-11-4	Total	218,0000	212,0000	217,0000	199,0000	846,0000						
	Correct	215,0000	179,0000	167,0000	196,0000	757,0000						
	Incorrect	3,0000	33,0000	50,0000	3,0000	89,0000						
	Correct (%)	98,6239	84,4340	76,9585	98,4925	89,4799						
	Incorrect (%)	1,3761	15,5660	23,0415	1,5075	10,5201						
7.MLP 18-9-4	Total	218,0000	212,0000	217,0000	199,0000	846,0000						
	Correct	214,0000	177,0000	167,0000	195,0000	753,0000						
	Incorrect	4,0000	35,0000	50,0000	4,0000	93,0000						
	Correct (%)	98,1651	83,4906	76,9585	97,9899	89,0071						
	Incorrect (%)	1,8349	16,5094	23,0415	2,0101	10,9929						

Рис 11. Сводка классификации

При попытке заменить атрибуты соответствующими им факторами точность классификации полученных нейронных сетей была довольно низкой, порядка 50%. При использовании лишь фактора с наибольшей объясняемой им дисперсий (то есть первого) вместо части атрибутов исходного массива данных наилучшими результатами были сети, показанные на рисунке 12.

Summary	Summary of active networks (dataset_54_vehicle - копия.sta)													
Index	Net. name	Training perf.	Test perf.	Validation perf.	Training algorithm	Error function	Hidden activation	Output activation						
1	MLP 12-12-4	85,01684	84,12698	84,92063	BFGS 121	SOS	Logistic	Identity						
2	MLP 12-9-4	79,29293	80,95238	80,95238	BFGS 51	Entropy	Logistic	Softmax						
3	MLP 12-6-4	80,13468	76,98413	80,95238	BFGS 90	Entropy	Identity	Softmax						
4	MLP 12-9-4	85,01684	82,53968	81,74603	BFGS 137	SOS	Tanh	Exponential						
5	MLP 12-10-4	82,49158	80,95238	83,33333	BFGS 95	SOS	Tanh	Tanh						

Рис 12. Наилучшие сети при попытке снижения размерности задачи

4 Решение задачи классификации в Deductor

Произведём обучение нейросети в программе Deductor. Так же, как и в случае использования пакета STATISTICA выберем переменную Class в качестве выходной, все остальные переменные будут использоваться в качестве входных (Рисунок 11). По умолчанию в Deductor для выходной переменной класса определяется по битам значения на выходе нейросети.

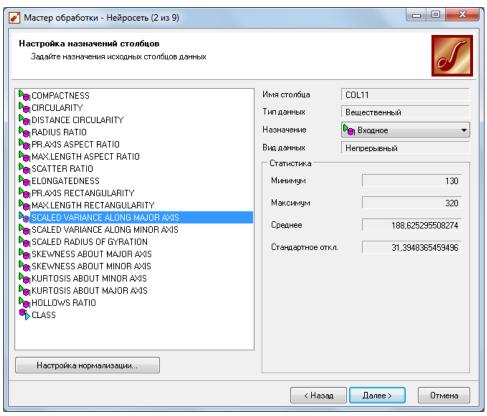


Рис 13. Выбор переменных

Разобьём исходный массив в соотношении 90 к 10 на обучающее и тестовое множества.

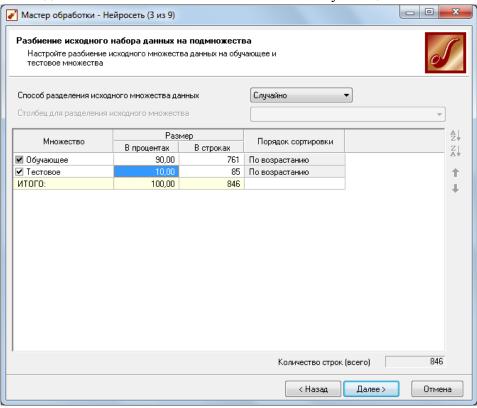


Рис 14. Разделение на обучающее и тестовое множества

Используем следующие настройки сети: кол-во слоёв 1, кол-во нейронов в слоях 18-8-2, функция активации — сигмоида с крутизной 1.5. В качестве алгоритма обучения используется

алгоритм обратного распространения ошибки. Указанные параметры представлены на рисунках 15, 16 и 17.

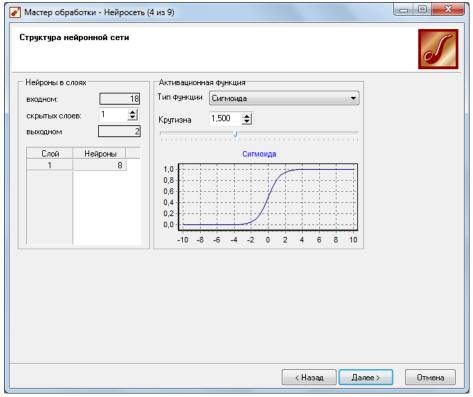


Рис 15. Настройка структуры нейросети

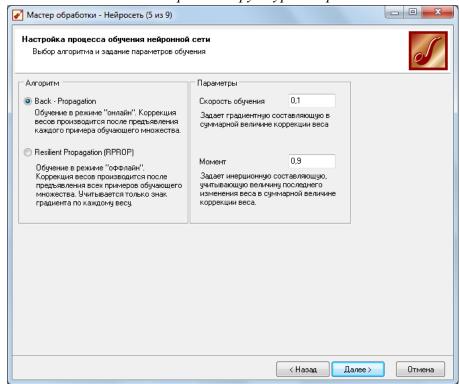


Рис. 16. Выбор алгоритма обучения нейросети

Запустим обучение сети при заданных параметрах. Результаты показаны на рисунке 17.

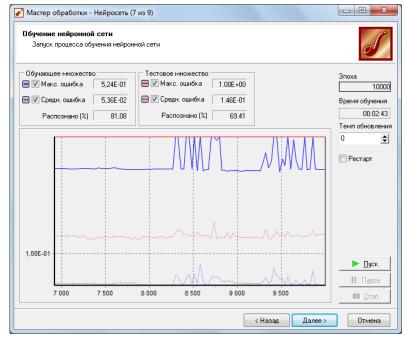


Рис. 17. Результаты обучения сети

Как видно из рисунка, процент распознанных наблюдений довольно мал, а именно равен 69 процентам. Такие результаты не являются удовлетворительными, поэтому повторим процесс с другими параметрами.

Прежде всего поменяем нормализатор классовой переменной с битовой маски на уникальные значения (рисунок 18).

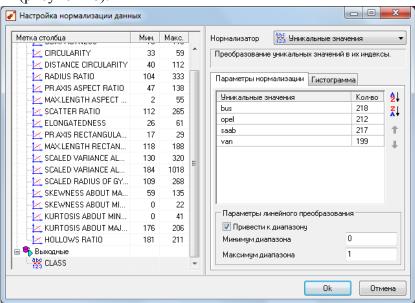


Рис. 18. Изменение нормализатора выходной переменной

Уменьшим крутизну сигмоиды до значения 1, количество нейронов в скрытом слое -6. Также можно заметить, что Deductor автоматически уменьшил количество выходных нейронов до 1 (Рисунок 19).

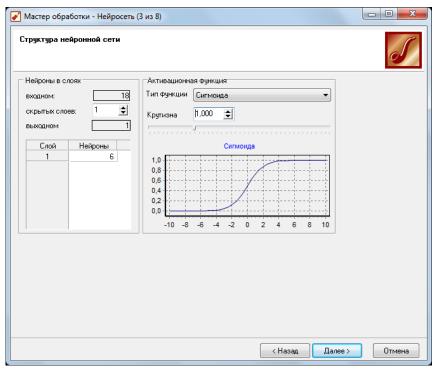


Рис. 19 Настройка структуры нейронной сети

Проведём обучение нейронной сети с новыми параметрами.

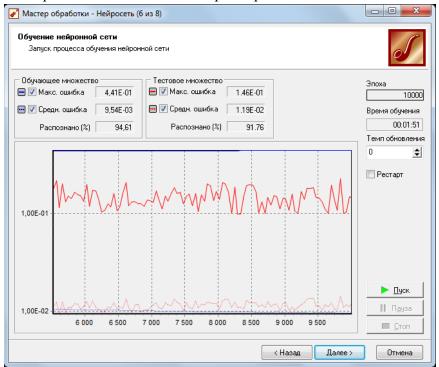


Рис. 20 Результаты обучения

Как видно из рисунка 20, на этот раз результаты проверки обученной нейросети гораздо лучше — 92% распознано на тестовом множестве и 95% распознано на обучающем множество. На рисунке 21 представлена таблица сопряжённости, из неё видно, что наибольшее количество ошибок при классификации происходит у наблюдений, относящихся к классам "saab" и "opel", причём нейросеть в основном путает их между собой, но в целом нейросеть работает довольно хорошо.

Обученная нейросеть некорректно классифицировала 93 наблюдения из 846, что примерно совпадает со значениями, полученными для лучших нейросетей в STATISTICA, то есть нейросети работают примерно на одном уровне, хотя данная нейросеть имеет более простую структуру.

Рис. 21 Таблица сопряжённости

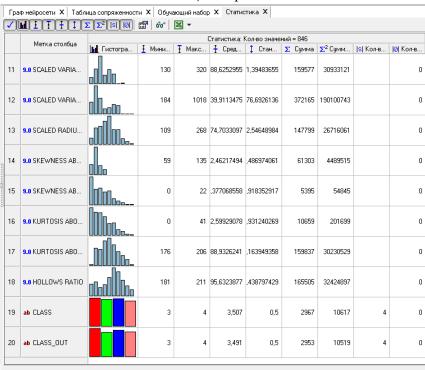


Рис. 22 Статистика переменных

На рисунке 22 представлена статистика фактических и классифицированных значений класса для наблюдений, как можно увидеть, характеристики данных переменных довольно близки.

Теперь попробуем улучшить результаты изменив алгоритм обучения на алгоритм упругого распространения(Рисунок 23). Укажем в качестве функции активации гиперболический тангенс с крутизной 1. Количество скрытых нейронов – 5.

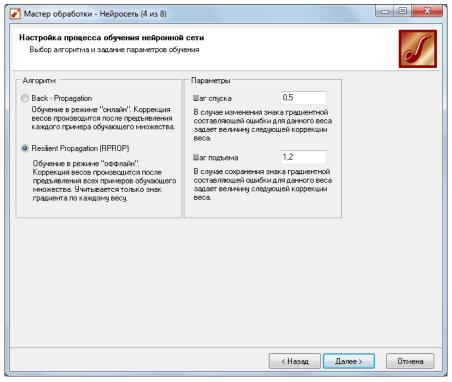


Рис. 23 Выбор алгоритма обучения сети

Результаты показаны на рисунках 24 и 25. Проценты распознанных наблюдений на обучающем и тестовом множествах вполне удовлетворительны: 92 и 86. Полученная нейросеть тоже имеет трудности при классификации классов "opel" и "saab", возможно увеличений количества нейронов в скрытых слоях поможет уменьшить процент ошибок распознавания на этих классах. В целом количество некорректно распознанных классов больше чем в предыдущих вариантах.

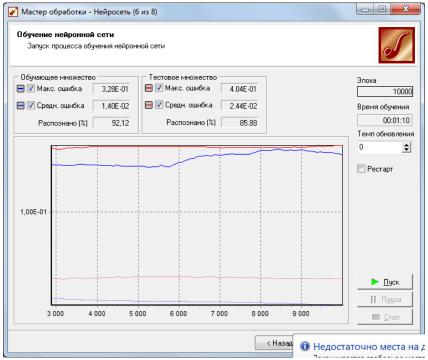


Рис 24. Результаты обучения сети

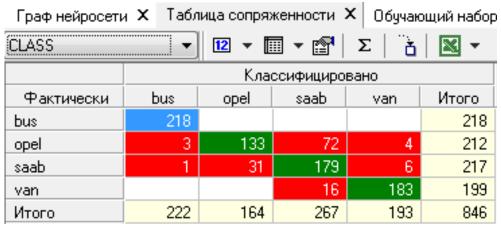


Рис. 25 Таблица сопряжённости

Попробуем увеличить количество нейронов в скрытых слоях и число самих скрытых слоёв. Указанные параметры изображены на рисунке 26.

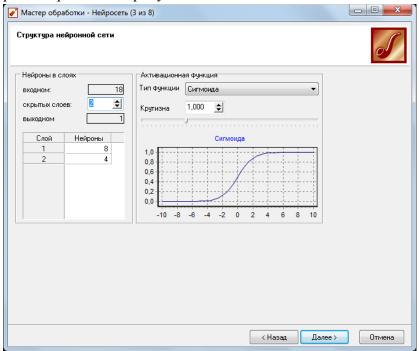


Рис. 26 Настройка структуры нейронной сети

Результаты представлены на рисунках 27 и 28. Данная нейросеть также имеет проблемы с распознаванием классов "opel" и "saab", однако по сравнению с предыдущей сетью, данная сеть имеет меньшее количество некорректно распознанных моделей – 93, точно такое же число, что и в самой с 6 нейронами в скрытом слое и алгоритмом обратного распространения ошибки. На рисунке 29 изображена структура текущей сети, на ней можно увидеть синапсы нейронов сети, синапсы окрашены в цвет, показывающий значение веса.

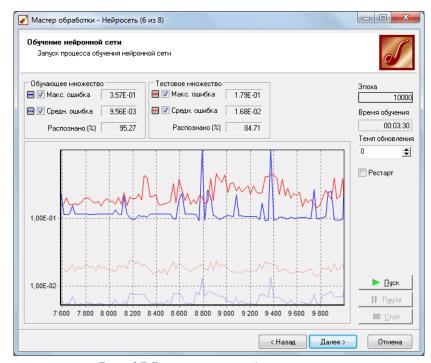


Рис. 27 Результаты обучения сети

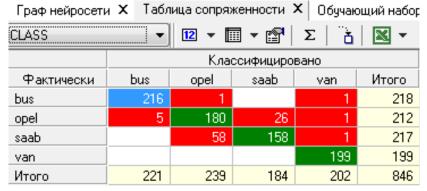


Рис. 28 Таблица сопряженности

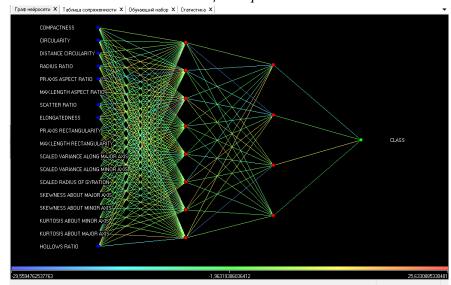


Рис. 29 Граф нейросети

5 Описание результатов

STATISTICA позволяет проводить автоматическое пакетное обучение нейросетей, что позволяет уменьшить время при классификации, также в ней имеются возможности для более тонкой настройки обучаемой нейросети, однако они не были рассмотрены в данной работе. Deductor имеет несколько настроек, не представленных в STATISTICA, однако работа в нём требует больших временных затрат. При решении конкретной поставленной задачи Deductor позволил получить нейросеть, показывающую результат, сравнимый с результатом, полученным в Statistica

Вывод

В рамках данной работы было организовано решение задачи классификации моделей машин на основе параметров силуэтов в двух программных средах: STATISTICA и Deductor. С помощью обеих программных сред были получены нейросети, обеспечивающие хороший процент распознавания и работающие примерно на одном уровне. STATISTICA обладает более широким функционалом по сравнению с Deductor, хотя в данной задаче не удалось обнаружить большой разницы в полученных результатах.